

TIM

Integrated Servo Motor

User Manual

ORIGINAL DOCUMENT Manual Revision 1.2

Manual Rev.	Date	Notes
Rev.1.2	18 July 2024	Updated dimensions drawings.
		Updated product label.
Rev.1.1	16 July 2024	Corrected descriptions for interfaces C1 and C2 in Chapter 6.
Rev.1.0/1.0a	11 July 2024	Initial release.

Revision History

Copyright Notice

© 2024 STXI Motion Ltd.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means without prior written permission of STXI Motion Ltd.

Disclaimer

This product documentation was accurate and reliable at the time of its release. STXI Motion Ltd. reserves the right to change the specifications of the product described in this manual without notice at any time.

Trademarks

TIM is a trademark of STXI Motion Ltd. CANopen and CiA are registered trademarks of the CAN in Automation User's Group EtherCAT is a registered trademark of Beckhoff Automation GmbH Windows is a registered trademark of Microsoft Corporation

Contact Information

www.stxim.com

contact@stxim.com

CANopen Vendor-ID

Vendor-ID 0x00000513 has been registered to STXI Motion Ltd.

EtherCAT Vendor-ID

Vendor-ID **0x00000D2B** has been registered to STXI Motion Ltd.

Contents

1	Intr	roduction	5
	1.1	Product Description	5
	1.2	Ordering Info	6
	1.3	Product Label	7
	1.4	Product Documentation	8
2	Sta	ndards Compliance	9
3	Safe	ety	10
	3.1	Safety Symbols	
	3.2	Safety Guidelines	
	3.3	Intended Use	
	3.4	Installation Safety	
		Thermal Safety	
		Electrical Safety	
		Functional Safety (STO)	
4	Har	ndling and Storage	13
	4.1	Transporting	
	4.2	Packaging	
5	Spe	ecifications	14
	5.1	Motor Power	
	F 0	Speed/Torque Curves	
	5.2	Feedback and Control	
	5.3	Inputs/Outputs	
	5.4	Communication	
	5.5	Mechanicai	
		Dimonsions	
	56	Dimensions	20 22
	5.0 5.7	Drive Protection	
6	Inct	tallation	23
U	61	System Design	23
	6.2	Setup Overview	
	63	Wiring Guidelines	24
	6.4	Grounding	
	6.5	Electrical Interfaces	
		P1 – Power	
		C1 – Digital I/Os	
		C2 – STO-Brake-RS232	
		C3 – Fieldbus OUT – CANopen/EtherCAT	
		C4 – Fieldbus IN – CANopen/EtherCAT	
7	Cor	nmissioning	30
	7.1	Computer System	
	7.2	STXI Motion Suite Software	
	7.3	Fieldbus Devices (CANopen/EtherCAT)	
	7.4	Communication Cabling	
		Serial Cabling	
		CANopen/EtherCAT Cabling	

	7.5	Power Up	
8	Net	work Communication	34
	8.1	CANopen Network	
		CANopen Network Management	
		CANopen Node ID	
		CANopen Baud Rate	
	8.2	EtherCAT Network	
		EtherCAT Address	
		EtherCAT Network Management	
9	Mot	or Brake Control	37
	9.1	Holding Brake	
	9.2	Manual Brake Disengagement	
10	Digi	tal Inputs and Outputs	39
	10.1	Serial	
		Digital Inputs	
		Digital Outputs	
	10.2	CANopen/EtherCAT	
		Digital Inputs – CANopen	
		Digital Outputs - EtherCAT	41
11	Firm	nware Upgrade	42
		Firmware Upgrade via RS232/STXI Motion Suite	
12	Trou	ubleshooting	44
	12.1	LEDs	
		Link Activity Status – LEDs C4 and C3 – EtherCAT only	
		Drive Status – Tri-colored LED – CANopen and EtherCAT	
		Run Status – RN – CANopen	
		Error Status – ER – CANopen	
		Run Status – RN – EtherCAT	
		Error Status – ER – EtherCAT	
	12.2	Warnings and Faults	47
		Warnings	47
		Faults	

1 Introduction

1.1 **Product Description**

The TIM is an integrated servo motor – consisting of motor, drive electronics, power stage and position sensor all in one unit. The TIM has digital I/Os, CANopen, EtherCAT and RS232 communication channels, and supports absolute single turn and multiturn encoders.

1.2 Ordering Info

The following table shows the ordering options that comprise the various model numbers of the integrated servo motors in the TIM product line. To enquire about custom options, contact STXI Motion.

Table 1-1. Product Ordering Options

		IM1 -	60S	4	3	2	5	EC	20	0	00
	Integrated Servo Motor										
			_								
	Frame Size and Length										
60S	Flange 60 mm Short (200 W)										
60M	Flange 60 mm Medium (400 W)										
80S	Flange 80 mm Short (480 W)										
80M	Flange 80 mm Medium (800 W)			_							
	DC Bus Voltage										
2	24 VDC (60 mm motors only)										
4	48 VDC										
	Rated Speed										
3	3000										
	Shaft										
0	Smooth										
2	Keyway										
	Connector and Protection Class										
5	Connector back mounting IP 54										
6	Connector top mounting IP 54										
	Communication										
со	CANopen										
EC	EtherCAT										
	Feedback										
20	Absolute single turn 21-bit										
30	Absolute multiturn 24-bit										
	Brake										
0	No brake										
В	With brake										_
	Option										
00	—										

1.3 Product Label

The product label is attached to the side of the TIM integrated servo motor.

Figure 1-1. Product label on TIM

Item Description

- 1 Part number
- 2 Product serial number
- 3 Nominal input
- 4 Nominal output
- 5 Brake type (if TIM has brake)
- 6 Country of manufacturer
- 7 Hot surface
- 8 Identification code
- 9 UL compliance
- 10 CE compliance
- 11 Protection class
- 12 Fieldbus
- 13 Hardware revision

1.4 Product Documentation

This documentation describes the TIM integrated servo motor.

It provides the information required for installation and configuration of the TIM.

This documentation is intended for persons who are qualified to assemble, commission, and maintain the equipment described herein.

Before you install the TIM, review the instructions in this manual. Pay particular attention to all safety instructions and warnings. Failure to follow the safety instructions may result in personal injury or equipment damage.

This manual is part of a documentation set, which consists of the following:

- TIM User Manual. Hardware installation, configuration and tuning.
- TIM EtherCAT/CANopen Reference Manual. Implementation of EtherCAT and CANopen protocol in TIM.
- TIM STXI Motion Suite Reference Manual. Guide for graphical software interface. (Not yet available)
- TIM Functional Safety User Manual. (Not yet available)

2 Standards Compliance

The TIM has been designed and manufactured according to the standards specified in the following table. Testing and certifications are pending.

Table 2-1. Standards Compliance

Торіс	Directive	Standard(s)
Thermal and Electrical Safety	EU Low Voltage Directive 2014/35/EU	EN IEC 61800-5-1
Electromagnetic Compatibility	EMC Directive 2014/30/EU	EN IEC 61800-3 EN IEC 61000-6-7
Functional Safety	Machinery Regulation EU 2023/1203	EN IEC 61508, Parts 1–7 EN IEC 61800-5-2 EN ISO 13849, Parts 1–2
RoHS	RoHS Directive 2011/65/EU	EN IEC 63000
REACH	TBD	TBD

3 Safety

3.1 Safety Symbols

The following safety symbols are used on the drive and in this manual.

Table 3-1.Safety Symbols

Symbol	Meaning	Description
<u>Í</u>	Dangerous voltage	Indicates a hazardous situation, which, if not avoided, will result in death or serious injury.
\triangle	Caution	Indicates a hazardous situation, which, if not avoided, could result in injury or equipment damage.
	Functional earthing	Identifies a functional earthing (grounding) terminal or conductor, which serves to ensure proper functioning of electronic equipment.
	Caution, hot surface	Indicates the marked item can be hot, and should not be touched without taking care.

3.2 Safety Guidelines

- Before installing or commissioning the TIM, review all relevant product documentation.
- Install and operate the system according to the instructions in this manual.
- Only qualified personnel may perform installation, operation, service, and maintenance procedures. These persons must have sufficient technical training and knowledge to foresee and recognize potential hazards that may occur when using the product, modifying settings, and operating the mechanical, electrical, and electronic components of the entire machine system.
- All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.
- Failure to follow the safety instructions may result in personal injury or equipment damage.

The TIM integrated servo motor is intended for use as a component within a machine system.

- The machine builder and integrator must ensure the protection of both personnel and the complete machine system.
- The machine builder and/or integrator must perform a risk assessment in view of using the TIM integrated servo motor in the intended application. Based on the results, the appropriate safety measures must be implemented.
- The TIM integrated servo motor must be used in compliance with all applicable safety regulations and directives, and all technical specifications and requirements.
- The machine builder and the machine owner are responsible for the safety of the machine operators.
- The machine owner and the machine operator are responsible for ensuring personnel cannot enter the hazard zone while the machine is energized unless adequate functional safety mechanisms are in place.

3.4 Installation Safety

Incorrect handling of the TIM may cause personal injury and/or damage to equipment.

Perform the installation in strict compliance with product specifications and installation instructions.

Thermal Safety

- During continuous motor operation, the motor body and drive heat up.
- To prevent damage to the product, ensure the temperatures of the TIM components remain at least 5°C below their threshold (fault) limits:
 - Drive CPU: 115°C
 - Heat sink: 90°C
 - Motor: 120°C
- STXI Motion Suite software reads and reports the temperatures of the drive CPU and the heatsink. It also reports the motor temperature if the motor has a sensor, as defined by the serial parameter MotorTempSensor.
- System temperature values can be read from object 2021h (sub-indices 1-6).
- Install the TIM in a manner that allows proper air flow.
- The TIM is rated for use at altitudes up to 2000 meter above sea level.

Electrical Safety

 TIM power supply. All connections and terminals with voltages up to 120 VDC in the TIM are equipped with safety extra-low voltage. They are protected against accidental contact in accordance with EN IEC 61800-5-1. For compliance, the TIM power supply must therefore be designed as a SELV/PELV supply (protection class III).

Warning. The use of unsuitable power supply units that are not SELV/PELV can lead to dangerously high voltages in the event of a fault.

 As part of the machine design, the machine builder must generate a hazard analysis for the machine and take appropriate measures to ensure that unforeseen movements cannot cause personal injury and/or damage to equipment.

Functional Safety (STO)

Refer to the TIM Functional Safety User Manual. (Not yet available)

4 Handling and Storage

4.1 Transporting

Transport the TIM integrated servo motor in its original packaging materials.

Avoid transporting the TIM in conditions which may cause strong vibrations of the drive, or impact with other objects.

4.2 Packaging

The package contains the TIM integrated servo motor only.

Upon receipt, open the package and remove all packing materials.

Check to ensure there is no visible damage to the TIM integrated servo motor. If damage is detected, notify the carrier immediately.

After unpacking, check the part number label on the product. Make sure it matches the product your ordered, and that the voltage meets your specific requirements.

Save the original box and packing materials in case you need to pack and return the product to the manufacturer.

5 Specifications

5.1 Motor Power

Table 5-1.	Motor Power Specifications
------------	----------------------------

Feature	Unit	IM1-60S	IM1-60M	IM1-60S	IM1-60M	IM1-80S	IM1-80M
Input Voltage	VDC	2	4	48			
Flange Size	mm	60	60	60	60	80	80
Power Rating	W	200	400	200	400	480	800
Rated Current	А	11	22	6.50	12	14.60	22
Peak Current	А	32.40	66	19.50	36	46	66
Rated Torque	Nm	0.64	1.27	0.64	1.27	1.53	2.55
Peak Torque	Nm	1.92	3.81	1.92	3.81	4.60	7.60
Rated Speed	rpm		3000				
No Load Speed	rpm	4200	4200	5400	5000	5100	4800
Brake Voltage	VDC	24 ±10%					
Brake power	W	7.4 13.5			3.5		
Holding torque	Nm			1.3			4

Speed/Torque Curves

IM1-60S – 48 VDC, 200 W

IM1-60M - 24 VDC, 400 W

IM1-60M - 48 VDC, 400 W

IM1-80S - 48 VDC, 480 W

IM1-80M – 48VDC, 800 W

5.2 Feedback and Control

Table 5-2. Feedback and Control Specifications

Feature	Specification	
Operation Modes	Selectable	Profile position Profile velocity Homing Types: 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 37 Cyclic synchronous position
Display		LEDs
Software Tools	User Interface	STXI Motion Suite, Windows-based
	Functions	Connection settings, Drive info, Power info, I/O configuration, Motion settings and tuning, Fault history/display
Feedback		Absolute single turn, Absolute multi turn

5.3 Inputs/Outputs

Feature	Specification		
3x Digital Input	Signal	Configurable opto-isolated, sink/source, Types: 1 and 3	
	Functions	Multi-functional, user-definable: home switch, positive limit switch, negative limit switch.	
	Voltage High Level Input	30 V	
	Min. High Level Input	11 V	
	Max. Low Level Input	5 V	
	Input Resistance	3.6 kΩ	
	Max. Input Frequency	5 kHz	
	Propagation Delay Time	200 µs	
1x Digital Output	Signal	Configurable open collector, opto- isolated sinking output	
	Functions	Multi-functional, user-definable: drive disabled, drive enabled.	
	Voltage	30 V	
	Max. Current	100 mA	
	Min. Load Resistance	300 Ω	
	Output Voltage	2 V	
	Min. Propagation Delay Time	1 ms (may be longer if load current is lower)	

5.4 Communication

Table 5-4. Communication Specifications

Feature	Specification
CANopen	CANopen – CiA 301 application layer and CiA 402 device profile for drives and motion control. Baud rate 10 kbps – 1 Mbps CAN ID 1 – 127 (Default 127) Heartheat producer SDO, PDO (dynamic mapping)
EtherCAT	CANopen over EtherCAT (CoE) – CiA 301 application layer and CiA 402 device profile for drives and motion control. Communication cycle time: up to 250 µs.
RS232	Serial communication for configuration

5.5 Mechanical

Weight

Table 5-5.TIM with Single Turn Feedback

Feature	Unit	IM1 60S	IM1 60M	IM1 80S	IM1 80M
Weight, without brake	kg	0.98	1.32	1.68	2.20
Weight, with brake	kg	1.24	1.58	2.40	2.86

Table 5-6. TIM with Absolute Multiturn Feedback

Feature	Unit	IM1 60S	IM1 60M	IM1 80S	IM1 80M
Weight, without brake	kg	1.10	1.45	1.80	2.35
Weight, with brake	kg	1.35	1.70	2.52	3.00

Dimensions

Table 5-7. TIM models IM1 60S / 60M

Part Number	Power (W)	Length (mm) with Absolute Single turn Encoder	Length (mm) Absolute Multiturn Encoder
IM1-60SX3X5XXYY000	200	104.3	124.3
IM1-60SX3X5XXYYB00	200 with brake	121.3	141.3
IM1-60MX3X5XXYY000	400	124.3	144.3
IM1-60MX3X5XXYYB00	400 with brake	141.3	161.3

Figure 5-1. Dimensions - TIM models IM1 60S / 60M

Table 5-8. TIM models IM1 80S / 80M

Part Number	Power (W)	Length (mm) with Absolute Single turn Encoder	Length (mm) Absolute Multiturn Encoder
IM1-80SX3X5XXXX000	480	113.25	133.25
IM1-80SX3X5XXXXB00	480 with brake	143.25	163.25
IM1-80MX3X5XXXX000	800	130.25	150.25
IM1-80MX3X5XXXXB00	800 with brake	160.25	180.25

Figure 5-2. Dimensions TIM models I M1 80S / 80M

5.6 Environmental

The TIM has been designed and manufactured according to the standards specified in the following table. Testing and certifications are pending.

Table 5-9. Environmental Specifications

Feature	Specification
Environment	Ambient temperature:
	Operation: 0 – 40°C
	Storage: 0 – 70°C
	Humidity: 10 – 90%
	Altitude: <2,000 m (per EN IEC 61800-5-1)
	Vibration: 1g sine vibration from 10 Hz to 150 Hz (per EN IEC 61800-5-1)
	Shock: 5g half-sine for 30 m (per EN IEC 61800-2)
Operating Conditions	Protection class: IP54

5.7 Drive Protection

Table 5-10. Protection Specifications

Feature	Specification
Protective Functions	Overload limit, Over-voltage, Over-current, Under-voltage,
	Drive over-temperature, Over-speed, Velocity error,
	Position error, PLL lock lost, Position following error.

6 Installation

6.1 System Design

Figure 6-1 System Design

6.2 Setup Overview

Perform the following steps to install a TIM system.

- **1.** Mount the TIM.
- 2. Make all wiring and cable connections, as required by your application:
 - DC bus voltage (P1)
 - CANopen/EtherCAT (C3, C4)
 - Digital inputs, digital outputs (C1)
 - Brake, STO, RS232 (C2)
- **3.** Connect the TIM to the PLC and/or the PC (C4).
- 4. Power up the TIM and the PC.
- **5.** Download and install STXI Motion Suite for TIM on the PC, and use it to configure and test the TIM.

6.3 Wiring Guidelines

To ensure optimal performance, wire your system in accordance with the following guidelines:

- To reduce the effects of EMI, the following cables are recommended:
 - Power supply shielded cables
 - CANopen/EtherCAT communication twisted pairs and shielded cables
- Twisting must be maintained as close as possible to both ends of the cable.
- Shielding must be maintained at both ends of the cable.
- If connecting the power supply unit (PSU) to more than one TIM, use either a star or a bus connection, as shown in the following figures.

When using a bus connection, be sure to select an appropriate wire gauge if minimal drive voltage is crucial.

Figure 6-2. Star Connection

Figure 6-3. Bus Connection

Warning: Do not daisy chain input voltage from one TIM to the next.

6.4 Grounding

When connecting the TIMto other control equipment, be sure to follow two basic guidelines for proper functioning of the drive:

- The TIM should be grounded via functional earth ground (FE) of the voltage supply.
- Any motion controller, PLC or PC that is connected to the TIM must be grounded to the same earth ground as the TIM.

For more details, refer to the section *Electrical Safety* in Chapter 3 of this manual.

6.5 Electrical Interfaces

Figure 6-4 Interfaces

P1 – Power

Table 6-1. P1 Connectors

Interface	Item	Manufacturer	Manufacturer Part Number
	Connector M12 Male, 5-pin, L-coded	TE Connectivity	T4140L12051-000
	Mating Cable Power cable, 5-position, PUR, Length: 1.5 m AWG 14 or AWG 16	TE Connectivity	TE: T4151399L25-002 STXI: CBL-M1205PW-01

Table 6-2. P1 Pinout

Pin #	Signal Description
1	Vpower Power In+
2	Vpower Power In+
3	Vpower Power Ret -
4	Vpower Power Ret -
5	Functional earth (FE)

C1 – Digital I/Os

Table 6-3. C1 Connectors

Interface	Item	Manufacturer	Manufacturer Part Number
	Connector M8 Male, 6-pin	Finecables	MB08MBAFF06ST
	Mating Cable M8 Female, Molded cable, Straight, Shielded	Finecables	FC: MA08FSAF06ST10CB14 STXI: CBL-M0806ACO-01

Table 6-4. C1 Pinout

Pin #	Signal Description
1	DIN 1
2	DIN 2
3	DIN 3
4	Out Com
5	DOUT 1
6	In Com

C2 – STO-Brake-RS232

Table	6-5.	C2 Connectors

Interface	Item	Manufacturer	Manufacturer Part Number
(A-coding)	Connector . M8 Male, 8-pin	Finecables	MB08FBAFF08ST
(A-coding)	Mating Cable. M8 Female, Molded cable, Straight, Shielded	Finecables	MA08MSAF08STXXCB14 (XX = length)

Table 6-6. C2 Pinout

Pin #	Signal Description
1	STO_1
2	RS232 Rx
3	RS232 Tx
4	V_Brake
5	GND_Brake
6	STO GND
7	STO_2
8	RS232 GND

C3 – Fieldbus OUT – CANopen/EtherCAT

Table 6-7. C3 Connectors

Interface	Item	Manufacturer	Manufacturer Part Number
	Connector M8 Female, 4-pin D-coded	Finecables	A838-CP-T0316
	Mating Cable M8 Male, 1 m Molded cable, Straight, Shielded, D-coded	Finecables	M8 to M8: FC: MA08MSDF04STx2-10CB25 STXI: CBL-M8M8ECD-001 M8 to RJ45: FC: MA08MSDF04ST10CB25-RJ45 STXI: CBI -M8RJ45D-001)

Table 6-8. C3 Pinout

Pin #	CANopen	EtherCAT
1	CAN_H	ECAT_OUT_Tx+
2	CAN_GND	ECAT_OUT_Rx+
3	CAN_L	ECAT_OUT_Tx-
4	CAN_GND	ECAT_OUT_Rx-

C4 – Fieldbus IN – CANopen/EtherCAT

Table	6-9.	C4 Connectors

Interface	Item	Manufacturer	Manufacturer Part Number
	Connector M8 Female, 4-pin D-coded	Finecables	A838-CP-T0316
	Mating Cable M8 Male, 1 m Molded cable, Straight, Shielded, D-coded	Finecables	M8 to M8: FC: MA08MSDF04STx2-10CB25 STXI: CBL-M8M8ECD-001 M8 to RJ45: FC: MA08MSDF04ST10CB25-RJ45 STXI: CBL-M8RJ45D-001) Karal State

Table 6-10. C4 Pinout

Pin #	CANopen	EtherCAT
1	CAN_H	ECAT_OUT_Tx+
2	CAN_GND	ECAT_OUT_Rx+
3	CAN_L	ECAT_OUT_Tx-
4	CAN_GND	ECAT_OUT_Rx-

7 Commissioning

7.1 Computer System

The STXI Motion Suite software requires Windows 10, 64-bit or higher.

The PC requires either of the following interfaces for serial communication with the TIM.

- A serial RS232 port
- A USB port with an USB-to-RS232 adaptor with ferrite bead.

To view recorded data, you need Microsoft Office Excel, or a similar spreadsheet software that supports CSV files.

7.2 STXI Motion Suite Software

- **1.** Download the STXI Motion Suite installation file from the STXI Motion website or contact Technical Support.
- 2. Install the STXI Motion Suite on your PC.
- **3.** When installation is complete, start STXI Motion Suite from the Windows Start menu or the shortcut on your desktop.

STXI Motion functionality is not available unless a TIM integrated motor is connected to and communicating with the PC.

Figure 7-1 STXI Motion Suite – not connected to drive

7.3 Fieldbus Devices (CANopen/EtherCAT)

- If using CAN protocol, an EDS (electronic data sheet) file for TIM must be loaded on the PC or PLC controller. Download the file from the STXI Motion website, or contact Technical Support.
- If using EtherCAT protocol, an ESI (EtherCAT slave information)/XML file for TIM must be loaded on the PC or PLC controller. Download the file from the STXI Motion website, or contact Technical Support.

7.4 Communication Cabling

For commissioning and tuning the TIM, the PC running STXI Motion Suite must be connected to the TIM through a serial RS232 port or a USB port with a USB-to-RS232Note adaptor.

Once the drive is configured, you can then connect it to a PLC or controller over a CANopen/EtherCAT network.

Serial Cabling

A standard serial USB to RS232 adapter, shown in the following figure, is used to connect the TIM to the PC to enable communication with STXI Motion Suite.

Figure 7-2 USB-to-RS232 adapter cable (example)

Figure 7-3 RS232/C2 connector cable (example)

Make the following cable connections. Refer to Interface C2 in section 6.5 *Electrical Interfaces*.

- **1.** Before connecting the USB-to-RS232 adapter cable to the PC, be sure the proper device driver is installed in the PC.
- Connect the USB-to-RS232 adapter cable to the USB port on the PC. The Found New Hardware Wizard will detect the device, and complete the driver installation.
- **3.** Connect the D9 male connector on the USB-to-RS232 adapter cable to the D9 female connector on the RS232/C2 cable.
- **4.** Connect the M8 connector on the RS232 cable to interface C2 on the TIM. Make sure pins 2, 3 and 8 are mated.

CANopen/EtherCAT Cabling

For fieldbus communication, use a cable with an M8 connector to connect to the TIM, and an RJ45 connector to connect to the master controller.

CANopen Chain

If chaining TIM drives in a CANopen network, they can be connector in any order, with cables plugged in to either C4 or C3.

CANopen Termination

In a CANopen network, a 120Ω termination resistor is required on the last node in the chain.

To implement the termination of the CAN bus on the TIM, connect a D-coded, M8 male termination resistor plug, to connector C4/C3 on the last TIM in the chain.

EtherCAT Chain

If chaining TIM drives in an EtherCAT network, they must be connected sequentially; that is, master controller to Drive 1 $\ln/C4$ > Drive 1 Out/C3 to Drive 2/C4 \ln > Drive 2 Out/C3, and so forth.

7.5 Power Up

- **1.** After completing the hardware connections and software installations, turn on power to the TIM.
- **2.** Open STXI Motion Suite.
- 3. In the navigation menu, select Communication > Serial.
- 4. In the Communication screen, select the PC COM port that is connected to the TIM.
- 5. Click **Connect** to enable communication with the drive.

STXIMotion 🖺 🐣]. T	▲ 🖉					Ģ	?
TiM(Serial) 🗸	Conne	ction							
✓ □ Connection ✓ Serial		Serial - on			Product Info				
> 🗀 Configuration		Drive	Тім	~	Part number	IM1-60M4325CO20000			
🗀 Faults & Warnings		Dent	CO144		Serial number	124190010			
> 🗀 Parameters		Port	COM4	•	Firmware version	21.9502.0001.0002	221		
Control Loops		Baud rate	115200	kbps	Bus voltage	48.00 volt			
🗀 Basic Operation		Disconnec	t		Drive rated current	16.97 A-Peak	2		
Advanced Operation		Errors			Drive peak current	50.91 A-Peak	- N		
> 🗀 Developer		Available		Select drive	Motor peak current	50.91 A-Peak			
	<	TIM		۲	Max motor speed	4999.98 rpm			

Figure 7-5 STXI Motion Suite – connected to drive

8 Network Communication

8.1 CANopen Network

CANopen Network Management

CANopen network nodes and states are controlled by network management (NMT) messages. The following diagram shows the network states and transitions.

Figure 8-1. CANopen Network Management (NMT) States

- Pre-operational state. This state is used primarily for configuration of the CANopen device; therefore, the exchange of process date via PDOs is not possible in this state, and the device cannot be enabled in this state.
- **Operation state**. In this state the transmission of process data via PDOs is possible. This is the only state in which a device can be enabled.
- **Stopped**. A node cannot transmit or receive any other messages in this state. A device cannot be enabled when in this state.

CANopen Node ID

The default node ID for the TIM is **CAN-ID:127**.

To modify the node ID, use the serial parameter **CanNodeID**.

Note: A CANopen/EtherCAT object is not yet implemented for Node ID.

- **1.** Save the new node ID in the TIM.
- 2. Cycle power to the drive.
- 3. The new node ID will be set upon power-up.

CANopen Baud Rate

The default baud rate for the TIM is 1000 kbps.

Possible baud rates in CANopen are: 125, 250, 500, 1000.

To modify the baud rate, use the **serial** parameter **CanBaudRate**.

Note: A CANopen/EtherCAT object is not yet implemented for Baud Rate.

- 1. Save the new baud rate in the TIM.
- 2. Cycle power to the drive.
- 3. The new baud rate will be set upon power-up.

8.2 EtherCAT Network

EtherCAT Address

During the start-up phase, the EtherCAT master device sends an auto-addressing telegram to the slave devices – each slave receives an address and auto-increments the address to the next higher number for the following slave. The EtherCAT master then continues to query each EtherCAT slave for details about its properties.

All addressing is performed by the EtherCAT master device according to the EtherCAT standard; there are no address settings for the user to manipulate.

EtherCAT Network Management

EtherCAT network nodes and states are controlled by network management (NMT) messages. The following diagram shows the network states and transitions.

Figure 8-2. EtherCAT Network Management (NMT) States

- Init. No communication on the application layer is available. The master has access only to the DL-information registers.
- Pre-operational. Mailbox communication on the application layer available, but no process data communication available
- Safe-operational. Mailbox communication on the application layer, process (input) data communication available. In SafeOp only inputs are evaluated; outputs are kept in 'safe' state.
- Operational. Process data inputs and outputs are valid.
- Bootstrap. Optional but recommended if firmware updates are required. No process data communication. Communication only via mailbox on Application Layer. Special mailbox configuration is possible, e.g. larger mailbox size. In this state the FoE protocol is usually used for firmware download

9 Motor Brake Control

9.1 Holding Brake

The TIM can be supplied with or without a holding brake. It is not possible to retrofit the holding brake.

The brake works according the closed-circuit current principle, and opens when voltage of 24 VDC $\pm 10\%$ is supplied.

If the power supply is interrupted, as in an emergency stop or a power outage, the brake stops the motor shaft rotation.

When using the holding brake, the TIM requires a separate 24 VDC power supply at connector C2, pins 4 and 5 (refer to section *Electrical Interfaces*).

t2 = brake pull-in time

Table 9-1. 60 mm flange Motor Brake Specifications

Voltage	VDC	24 ±10%
Power	W	7.4
Static Torque min.	Nm	1.3
Resistance	Ω	78 ±10%
Release Voltage	V	> 1
Pull-in Voltage	V	≤ 16.8
Release time	ms	30
Pull-in time	ms	50

Table 9-2. 80 mm Flange Motor Brake Specificatio	e Motor Brake Specificatio	80 mm Flange I	Table 9-2.
--	----------------------------	----------------	------------

Voltage	VDC	24 ±10%
Power	W	13.5
Static Torque min.	Nm	4.0
Resistance	Ω	42.7 ±10%
Release Voltage	V	> 1.2
Pull-in Voltage	V	≤ 16.8
Release time	ms	30
Pull-in time	ms	60

Note In vertical axis applications, it is necessary to implement additional safety measures, such as, but not only, mechanical interlocks, redundant brakes.

9.2 Manual Brake Disengagement

There are no specific commands that allow the user to explicitly disengage/engage the brake on the TIM.

During maintenance, however, the user might need to release the brake and move the motor. For such a purpose, use the following procedure:

- **1.** Disable the drive.
- 2. Use the serial parameter BrakeSupport, or the CANopen object 0x210F.

Define the parameter/object value as:

0: No brake on TIM.

The brake is considered disengaged; the motor can be moved.

1: TIM has brake.

The brake is controlled by the drive.

When the drive is disabled, the brake is engaged; the motor cannot be moved. When the drive is enabled, the brake is disengaged; the motor can be moved.

The parameter value can be modified only when the drive is disabled.

The parameter value is stored in the drive's non-volatile (flash) memory.

10 Digital Inputs and Outputs

The digital inputs and outputs can be configured in the STXI Motion Suite software. In the navigation menu, select Communication > **Configuration** > **IO config**.

10.1 Serial

The **Digital Inputs** tab enables you to configure functionality and polarity of the digital inputs, and to monitor the state of the digital inputs.

57XiMotion 🚆 🖞		<u> </u>	l I				Ф	?
TiM(Serial)		Configuration						
> 🗖 Connection		Digital Inputs						
✓ ☐ Configuration ✓ I/O config		Name	Assignment		Polarity	Connector Pin Number	Status	
🗖 Faults & Warnings		#1	User	~	0 ~	1	•	
> 🗀 Parameters								
Control Loops		#2	Positive Limit Switch	~	0 ~	2	•	
Basic Operation								
🗀 Advanced Operation		#3	Negative Limit Switch	~	• •	3	•	
> 🗀 Developer								
		Digital Outputs						
	<	Name	Assignment		Polarity	Connector Pin Number	Status	
		#1	Disable	~	0 ~	5	۰	

Figure 10-1 STXI Motion Suite – IO configuration

Digital Inputs

Element	Description	Serial Parameters
Name	Identifies the specific input.	
Assignment	Defines the functionality of the digital input. 1 = User defined 2 = Position limit 3 = Negative limit 4 = Home switch	DigInput1Assign DigInput2Assign DigInput3Assign
Polarity	Defines the polarity of a digital input. 0 = Not inverted 1 = Inverted As a result of inversion, the Status graphic element in the software changes color.	DigInput1Polarity DigInput2Polarity DigInput3Polarity
Connector Pin Number	Indicates the pin number of the input on interface C1.	
Status	A graphic element that toggles between green and gray to reflect the on and off states of the actual input.	DigInput1 DigInput2 DigInput3

Digital Outputs

The **Digital Inputs** pane enables you to configure functionality and polarity of the digital output, and to monitor the state of the digital output.

Element	Description	Serial Parameters
Name	Identifies the specific output.	
Assignment	Defines the functionality of the digital output. 0 = Not used 1 = User defined 2 = Drive disabled 3 = Drive enabled	Out1Assign
Polarity	Defines the polarity of a digital output. 0 = Not inverted 1 = Inverted As a result of inversion, the Status graphic element in the software changes color.	Out1Polarity
Connector Pin Number	Indicates the pin number of the output on interface C1.	
Status	A graphic element that toggles between green and gray to reflect the on and off states of the actual output.	DigOutput1

10.2 CANopen/EtherCAT

Input and output functionality is implemented in the TIM according to the CAN standard.

- Object 60FDh Inputs
- Object 60FE Outputs

Note: *Object 60FD (digital inputs) not yet implemented for EtherCAT.* **Note**: *Object 60FE (digital outputs) not yet implemented for CANopen.*

Digital Inputs – CANopen

Bit	Field	Bit Value	Definition
0	Negative limit switch	0	Negative limit switch not reached
		1	Negative limit switch reached
1	Positive limit switch	0	Negative limit switch not reached
		1	Negative limit switch reached
2	Home switch	0	Home switch not reached
		1	Home limit switch reached
3	Reserved/Interlock	0	Not applicable
4–15	_		Not applicable
16-31	Manufacturer-specific:	0	Function is not activated
	bit 16 – digital input 1	1	Function is activated
	bit 17 – digital input 2		
	bit 18 – digital input 3		

Object 60FDh is organized bit-wise.

Digital Outputs - EtherCAT

Object 60FEh is organized bit-wise.

The object includes sub-indices.

	Field	Bit Value	Definition
Sub-index 01	Set brake	0	Switch off / do not set brake
		1	Switch on / set brake
Sub-index 01	Reserved	0	Reserved
Sub-index 01	Manufacturer-specific	0	Switch off
		1	Switch on
Sub-index 02	Each bit	0	Disable output
		1	Enable outputs

11 Firmware Upgrade

Firmware Upgrade via RS232/STXI Motion Suite

Drive firmware is downloaded to drive through a serial connection and the STXI Motion Suite software.

Note Firmware download over CAN or EtherCAT is not yet supported.

Preparation

- **1.** Download the required firmware file from the STXI Motion website, or contact Technical Support. The firmware file has the extension **bHex** or **Hex**.
- 2. Read the release note or other documentation supplied with the new firmware.
- **3.** Before upgrading the firmware, it is recommended that you backup the drive parameters, since parameter settings may be modified during the upgrade process. After the upgrade is completed, the parameters can be restored.

To backup parameters from drive:

- a. Open STXI Motion Suite.
- b. In the navigation menu, select Parameters.
- c. At the top of the Parameters screen, select Export Parameters.

Export Parameters saves all the parameters in the drive to a CSV file, and automatically downloads the file to the **Download** folder on your PC. You can rename the file and store it in any other location on your PC.

	Parameters										
	Read Parameters Values Display values in hex	Export Parameter	s Import Paramete	select par	ameters					~	
	Name Feedback	index	Value	Actions	Units	data type	Access	Default	Min	Max	
	CommutationElect	0x2016	2.36914	^	rad	f32	R	0	0	6.2832	☆
	CountsPerRev	0x2019	2097152	^	counts/rev	s32	R	262144	256	10000000	☆
	FBAlignCurrent	0x2010)		NA	f32	RW	0.4	0	500	☆
	FBAlignMode	0x2010)		NA	s16	RW	0	0	1	☆
<	FBAlignPhase	0x2010)	^	rad	f32	R	0	0	0	☆
	FBAlignStatus	0x2010)	^	NA	s16	R	0	0	0	☆
	ForcedCommFreq	0x2017			Hz	f32	RW	0	0	1000	☆
	IncEncoderCountsPerRev	0x2030	262144		counts/rev	s32	RW	262144	256	10000000	☆
	IncEncoderIndexCapture	0x0	0	^	rad	f32	R	0	0	359	$\dot{\mathbf{x}}$

Figure 11-1 STXI Motion Suite – Parameters

- **1.** Before downloading firmware to the TIM, make sure the drive is disabled.
- 2. From the STXI Motion Suite toolbar, select **Download Firmware**.
- 3. At the prompt, Select Load File.
- 4. Browse to and select the new firmware file, and click **Open**.
- 5. Select Download.

Downloading the firmware file to the drive takes 1–2 minutes.

Resuming Operation

 Confirm that the new firmware has been downloaded to drive. Open the STXI Motion Suite Connections screen, and check the Firmware version displayed in the Product Info pane:

				¢	?
	Product Info				
1	Part number	IM1-60M4325CO20000			
	Serial number	124190010			
	Firmware version	21.9502.0001.0002	0,0 1		
		10.00			

Figure 11-2 STXI Motion Suite – Firmware version

- **2.** Restore the saved parameters to the drive.
 - a. At the top of the Parameters screen, select Import Parameters.
 - b. Browse to and selected the CSV file you saved on your PC.
- **3.** Check the version release notes.
- 4. Set any parameters that may have been added in the new version.

12 Troubleshooting

12.1 LEDs

One tri-color LED serves as a drive status indicator.

Four LEDs serve as fieldbus indicators.

Figure 12-1 Communication and Drive Status Indicator LEDs

Link Activity Status – LEDs C4 and C3 – EtherCAT only

Color	LED state	Description
Green (C4) Red (C3)	Off	No link
	Blinking	Link and activity
	On	Link without activity

Drive Status – Tri-colored LED – CANopen and EtherCAT

Power Up (boot)

Color	LED state	Description
Green	Blinking	Immediately after power up. Evaluating checksum of the application firmware.
Orange	Blinking	Immediately after power up. Evaluating checksum of a new (recently downloaded) application firmware within a backup sector.
Orange	Blinking (other)	Immediately after power up and before application firmware starts running. Indicates a reprogramming sequence after firmware download.
Orange	Flashing	Application firmware checksum failure. Drive requires repair. (1s on > 1s off > 1s on > 1s off > 1s on > 3s off.)

Operational

Color	LED state	Description
Green	On	The TIM is enabled. No faults.
Green	Flashing	The TIM is disabled. No faults. (1000 ms on, 1000 ms off).
Red	On	A fault has been detected and needs attention. The LED remains lit until the error is resolved.
Red	Flashing	STO disconnected. (1000 ms on, 1000 ms off).
Red	Blinking	STO one channel diagnostic fault. (300 ms on, 300 ms off).
Red/Orange	Blinking	Watchdog. (300 ms red, 300 ms orange)

Run Status – RN – CANopen

Color	LED State	Slave State	CANopen Description
Green	On	Operational	The device is in Operational state.
Green	Blinking	Pre-operational	The device is in Pre-operational state.
Green	Single flash	Stopped	The device is in Stopped state.

Error Status – ER – CANopen

Color	LED State	Error Name	CANopen Description
Red	Off	No error	The device is in working condition
Red	On	Bus off	The CAN controller is bus off
Red	Single flash	Warning limit reached	At least one of the error counters of the CAN controller has reached or exceeded the warning level (too many error frames).
Red	Double flash	Error control event	A guard event (NMT-slave or NMT- master) or a heartbeat event (heartbeat consumer) has occurred.

Run Status – RN – EtherCAT

Color	LED State	Slave State	EtherCAT Definition
Green	On	Operational	The device is in Operational state.
Green	Off	Initialization	The device is in Initialization state.
Green	Blinking	Pre-operational	The device is in Pre-operational state.
Green	Single flash	Safe-operational	The device is in Safe-operational state.

Error Status – ER – EtherCAT

Color	LED State	Error Name	EtherCAT Definition
Red	Off	No error	EtherCAT communication of the device is in working condition.
Red	On	Application controller failure	A critical communication or application controller error has occurred.
Red	Single flash	Local Error	Slave device application has changed the EtherCAT state autonomously due to local error (Error Indicator bit is set to 1 in AL Status register.) <i>Unsolicited state change</i> .
Red	Double flash	Process data watchdog timeout/ EtherCAT watchdog timeout	An application watchdog timeout has occurred.
Red	Blinking	Invalid Configuration	General configuration error
Red	Flickering	Booting error	Booting error was detected. Init state reached, but Error Indicator bit is set to 1 in AL Status register.

12.2 Warnings and Faults

The following tables list the warnings and faults issued through serial communication.

For EtherCAT/CAN fault codes and descriptions, refer to object 603Fh (Error Code) and object 2032h (Fault word) in the *TIM EtherCAT/ CANopen User Manual*.

Warnings

Warnings are not considered faults and do not disable operation. The system automatically clears the warning state when the condition that generated the warning no longer exists.

Fault ID#	Serial String	Description
0	No User Enable	Drive is Disabled. Indicates the user enable command (serial command En or the relevant bits in fieldbus control word) is missing.
43	Drive Overload Warning	
45	Motor Overload Warning	
46	Drive Over Temp Warning	This warning is issued when the measured drive temperature (serial command DriveTemp) reaches 5°C below the drive temperature threshold (serial command DriveTempThreshold); that is, 5°C before the drive temperature fault occurs.
56	Drive Under Voltage Warning	The warning is issued when the measured bus voltage (serial command BusVoltageSense) drops to within 2V of the undervoltage threshold (serial command UnderVoltageThreshold); that is 2V before the undervoltage fault occurs.
58	Heatsink Over Temp Warning	The warning is issued when the measured heatsink temperature (serial command HeatSinkTemp) reaches 5°C below the heatsink temperature threshold (serial command HeatsinkTempThreshold); that is, 5°C before the heatsink temperature fault occurs.
63	STO Not Active Warning	This warning is issued when STO voltage is removed while the drive is enabled.
69	BiSS Feedback Warning	
71	Motor Over Temp Warning	The warning is issued when the measured motor temperature (serial command MotorTemp) reaches 5°C below the motor temperature threshold (serial command MotorTempThreshold); that is, 5°C before the motor temperature fault occurs.

Faults

Faults occur when settings or conditions may adversely affect TIM operation or damage the drive.

Faults automatically disable the drive, and the fault status is indicated by LEDs and/or software messages.

The drive fault status is generally latched, and the drive cannot be enabled until the fault status is explicitly cleared. The fault status cannot be cleared until the fault condition no longer exists.

Fault ID#	Serial String	Description	TIM Response
1	Current Offsets Invalid	This fault is in effect until the drive completes the offset compensation calculation for the A2D converters, which sample the motor phase U, V and W currents.	Immediate disable
7	Overload Design Failed		Immediate disable
24	PWM Driver Error	 This fault occurs in several instances: If the gate driver type could not be read from the power board EEPROM memory (serial command GateDriveType). If the gate driver type is unknown to the firmware (serial command GateDriveType). If configuration of the gate driver (e.g., via SPI interface) has failed. 	Immediate disable
25	Fieldbus Sync Loss	This fault occurs when the drive loses synchronization with the fieldbus master during enable. Refer to documentation for object 210Bh - PLL Information Parameters.	Immediate controlled stop
26	Corrupted Parameters File	This fault occurs when the loading of parameter data from the flash memory fails due to checksum errors or unknown/invalid data content. The fault can be cleared by saving the parameter (serial command SaveParams 1).	Immediate disable

Fault ID#	Serial String	Description	TIM Response
27	Motor Over Speed	This fault occurs when the actual velocity (serial command VAct) exceeds the overspeed threshold for 5 consecutive MTS cycles (5 x 62.5 µs). The overspeed threshold is the minimum of the user overspeed setting (serial command Overspeed), and 1.2 times the maximum motor speed (serial command MotorSpeed. The default value is stored in the TIM digital board EEPROM memory and can be retrieved via PersonalityDigRead MotorSpeed.	Immediate disable
28	Drive Over Current	This fault occurs when the CPU either reads or latches an over-current hardware signal on a dedicated CPU input pin.	Immediate disable
29	Drive Over Voltage	 This fault occurs in two instances. If the measured bus voltage (serial command BusVoltageSense) exceeds the overvoltage threshold (serial command OverVoltageThreshold). OverVoltageThreshold is the minimum of: General TIM maximum voltage rating of 72V. 1.5 times the motor voltage (serial command MotorVoltage). (The default value is store in the TIM digital board EEPROM memory and can be retrieved via PersonalityDigRead MotorVoltage). 1.75 times the TIM drive voltage (serial command Vbus, the command reads the value directly from the TIM power board EEPROM). By means of an external CPU signal from the PCB (if that feature is enabled) 	Immediate disable

Fault ID#	Serial String	Description	TIM Response
30	Drive Over Temp	This fault occurs when the measured drive temperature (serial command DriveTemp) exceeds the drive temperature threshold (serial command DriveTempThreshold).	Immediate controlled stop
31	Motor Over Temp	This fault occurs when the measured motor temperature (serial command MotorTemp) exceeds the motor temperature threshold (serial command MotorTemp Threshold).	Immediate controlled stop
32	PE Max Exceeded	This fault occurs when the following error of the position loop (serial command Pe) exceeds the user-defined following error threshold (serial command PeMax). Tuning the control loops affects generation of this fault.	Immediate controlled stop
33	MT6835 Enc Over Speed Reached	 This fault occurs when, for 3 consecutive MTS cycles (3 x 62.5 μs), the MT6835 feedback device reports a Rotation Overspeed Warning in the STATUS information bits of the feedback register 0x0005. This error is reported by the feedback device itself. The maximum rotation speed of the MT6835 feedback device is defined in the datasheet as 120,000 rpm. 	Immediate disable
34	MT6835 Enc Weak Magnetic Field	This fault occurs when, for 3 consecutive MTS cycles (3 x 62.5 µs), the MT6835 feedback device reports a Weak Magnetic Field Warning in the STATUS information bits of the feedback register 0x0005. This error is reported by the feedback device itself.	Immediate disable
35	MT6835 Enc No Communication	This fault occurs when, for 3 consecutive MTS cycles (3 x 62.5 μ s), the CPU reads 0xFFFF,FFFF from the MT6835 feedback device. This is due to a missing connection to the feedback device.	Immediate disable

Fault ID#	Serial String	Description	TIM Response
36	MT6835 Enc CRC Failed	This fault occurs when, for 3 consecutive MTS cycles (3 x 62.5 μ s), the CPU detects a CRC error of the data received from the MT6835 feedback device.	Immediate disable
37	EE Emulator Error		Immediate disable
39	Drive Under Voltage	The fault occurs when the measured bus voltage (serial command BusVoltageSense) reaches or drops below the undervoltage threshold (serial command UnderVoltageThreshold).	Immediate controlled stop
42	Drive Overload		Immediate disable
44	Motor Overload		Immediate disable
54	MT6835 Enc Under Voltage	This fault occurs when, for 3 consecutive MTS cycles (3 x 62.5 µs), the MT6835 feedback device reports a Weak Under Voltage Warning in the STATUS information bits of the feedback register 0x0005. This error is reported by the feedback device itself	Immediate disable
57	Heatsink Over Temp	This fault occurs when the measured heatsink temperature (serial command HeatSinkTemp) exceeds the heatsink temperature threshold (serial command HeatsinkTempThreshold).	Immediate controlled stop
59	Authorization Key Is Missing	The error is raised in case that the product did not receive an authorization key during the production process. Contact STXI Motion Technical Support.	Immediate disable
60	Motor Brake Fault		Immediate disable
61	Heatsink Temp Sensor Fault		Immediate controlled stop
62	STO Not Active Fault	This fault occurs when STO voltage is removed while the drive is enabled.	Immediate disable
64	STO Channel 1 Diagnostic Fault		Immediate controlled stop

Fault ID#	Serial String	Description	TIM Response
65	STO Channel 2 Diagnostic Fault		Immediate controlled stop
66	BiSS Config Failed		Immediate disable
67	BiSS Communication Fault		Immediate disable
68	BiSS Feedback Alarm		Immediate disable
70	CAN Init Failed		Immediate disable
72	Motor Temp Sensor Fault		Immediate controlled stop
73	Invalid Drive Peak Current		Immediate disable
74	Invalid Drive Rated Current		Immediate disable
75	Personality Info Invalid	This fault occurs when either the digital board EEPROM or the power board EEPROM was not completely initialized with proper values during production process. Contact STXI Motion Technical Support.	Immediate disable
76	CAN Baud Rate Changed		Immediate disable
77	Unknown Flash Size	This fault occurs when the digital board EEPROM does not contain a valid value for the digital board QSPI flash size. The serial command FlashSize reads that flash-size value out of the EEPROM and the error is raised in case that the flash size was not yet programmed to the EEPROM (value -1 is returned). Contact STXI Motion Technical Support.	Immediate disable

TIM

User Manual