
Language
(MC-Basic)

softMC Training – Module 4

Contents

 MC-Basic Syntax

 Instructions/Commands

 Constants

 Variables

 Data Types (Basic, Complex and Motion)

 Expressions

 Math

 Strings

 Virtual Entry Station

Introduction

 softMC is programmed in MC-Basic (Motion Control BASIC)

 MC-Basic = Standard BASIC programming language enhanced for multi-tasking
and motion-control

Syntax

Syntax

 Line oriented

 End of a line is considered the end of a command

 Line length limited to 80 characters

Move A1 100000 VCruise = 1000 Acceleration = 10000

Deceleration = 10000 Absolute = 1 VelocityFinal = 500

Invalid. All the code for a command must be on one line and
must not contain more than 80 characters

 Case insensitive

Dim MC_CLASS as String

mC_cLaSS = "MC Class"

Valid. All MC-Basic commands, variable names, file names and task
names are case insensitive.

 Exception: Strings are case sensitive

Instructions / Commands

 Comments

 Declarations - Memory Allocation

 Assignment

 Printing

Comments

 Comments are preceded by an apostrophe '

 Comments are preceded by the command Rem

Declarations

 Declarations allocate memory for variables and system elements

 Simple

 Example: long integer

 Complex

 Examples: cam table, group

 Examples

Common Shared

Dim Shared

Dim

Assignments

 Assign a new value to a variable

 Syntax

<value> = <expression>

 Example

X = Y + 1

Printing

 Print messages from within a program or in terminal
Print "Hello World"

 Print to COM port/file (send ASCII characters)
Print#1 "Hello World!"

 Formatted print (PrintU or PrintUsing)
PrintU "The number is #, # ";i1,i2

When printed, the first hashtag will be replaced by the value of
i1and the second hashtag will be replaced by the value of i2.
i1 and i2 will have one digit only.

PrintUsing "The Current Position is: #.##"; PFB

When printed, the value of PFB will given as a number with 2 decimal
places.

 Print to TCP/IP sockets
 PrintU#1 "The number is #, # ";j1,j2

Constants / Variables

Constants and Variables

 The names of all constants, variables and system elements:

 Must start with an alphabetical character (a-z, A-Z)

 May contain up to 32 alphabetical characters, numbers (0-9) and
underscores (_)

Constants

 Constants can be written in various formats:

 Decimal

131

 Hex

0x83

 Binary

0b10000011

Literal Constants

 Literal constants are reserved words that have a fixed value

 Blue is the default color of recognized literal constants

 Examples
PI

= 3.141592653590001
Off

= 0
On

= 1
False

= 0
True

= 1
Linear

= 0 – Used in setting motion type
Rotary

= 1 – Used in setting motion type

Variables

 Variables are declared

 Variable names are assigned by user

 System, task or local

 32-bit signed integer

 Double precision floating point

 Arrays

Variables

 System (global) variable – recognized by all tasks in the system

 Syntax
Common Shared <variable> as <type>

 Example
Common Shared Sys_Var1 as Long

 Task variable – recognized only by the task in which it is declared

 Syntax
Dim Shared <variable> as <type>

 Example
Dim Shared Task_Var1 as Double

 Local variable – recognized only within a program, subroutine or function

 Syntax
Dim <variable> as <type>

 Example
Dim Y as Double

Variables – Assignments - Examples

 Assign a value to a variable

MyVariable = 27

 If a Double (floating point) value is assigned to a Long variable,
the fractional part of the double value is truncated and
the integer part is assigned to the long variable

-->Common Shared dposition as Double

-->Common shared lposition as long

-->dposition = 3.456789

-->?dposition

3.456789000000000e+00

-->lposition = dposition

-->?lposition

3

Data Types

Basic Data Types

 Numeric – Long: 32-bit integer

 Numeric – Double: 64-bit floating point

 String: ASCII or UTF-8 string, unlimited length

Complex Data Types

 Structure

 Semaphore

 Array

 User Error/Note: ASCII string and a unique integer exception number

 Generic axis

 Generic group

Structures

 A structure is a data type used for storing a list of variables of different types
within one variable.

 Can be defined in Config.prg and in libraries

 Precedes the Program block

Type <variable>

<variable> as <type>

<variable> as <type> {<of> <robot_type>}

…

End Type

 A structure element is addressed through the structure’s name and
the arrow sign (->)

<structure>{[]…}-><element>{[]}

Motion Data Types

 CAM Table

 PLS (programmable limit switch)

 Compensation Table

 Point – Robot Joint

 Point – Robot Location

 Moving Frame

Expressions

Expressions

 Expression: a combination of constants and variables with operators to
produce a single value.
= is used for assignment

X = Y + Z * A / B

 Condition: a logical expression that (when evaluated) is :
True if the result is not zero and
False if the result is zero.

 = is used for comparison (logical operator)

If X = Y + Z * A / B Then ...

 binary-operator operand

x + y

 unary operator operand

+ y

Math

Operators – Arithmetic

In order of precedence:

 Parentheses ()

 -

Math Functions

 Abs(x)

 Atn (x/y) in radians, between ±p/2

 Atan2(x, y) in radians

 Cos(x), Sin(x), Tan(x) in radians

 Exp(x), Log(x) natural log

 Sgn(x) Sign

 Sqrt(x) Square root

 Round(x) Round to nearest even

27

Binary Operators

 Relational

 Logical

 Bit-wise

Strings

String Operations

 Concatenation

 Compare

 Find in string

 Extract

 Convert to/from number

 Convert to/from upper/lower case

String Functions

ASC(S,I) Returns an ASCII character value from within a string, S, at position, I.

BIN$(X) Returns the string representation of a number (X) in binary format (without the Ob prefix).

CHR$(X) Returns a one-character string corresponding to a given ASCII value, X.

HEX$(X) Returns the string representation of a number (X) in hexadecimal format (without the 0x prefix).

INSTR(I,SS,S) Returns the position, I, of the starting character of a substring, SS, in a string, S.

LCASE$(S) Returns a copy of the string, S, passed to it with all the uppercase letters converted to lowercase.

LEFT$(S,X) Returns the specified number, X, of characters from the left-hand side of the string, S.

LEN(S) Returns the length of the string, S.

LTRIM$(S) Returns the right-hand part of a string, S, after removing any blank spaces at the beginning.

MID$(S,I,X)
Returns the specified number of characters, X, from the string, S, starting at the character at
position, I.

RIGHT$(S,X) Returns the specified number of characters, X, from the right-hand side of the string, S.

RTRIM$(S) Returns the left-hand part of a string, S, after removing any blank spaces at the end.

SPACE$(X) Generates a string consisting of the specified number, X, of blank spaces.

STR$(X) Returns the string representation of a number, X.

STRING$(X,{S},{Y})
Creates a new string with the specified number, X, of characters, each character of which is the
first character of the specified string argument, S, or the specified ASCII code, Y.

UCASE$(S) Returns a copy of the string, S, passed to it with all the lowercase letters converted to uppercase.

VAL(S) Returns the real value represented by the characters in the input string, S.

System

System Parameters

 Provide information about the system

 Some can be used in expression processing

 Examples

System.Time ‘set/get the time

System.Date ‘set/get the date

System.Clock ‘get the system clock (in milliseconds)

Virtual Entry Station
(VES)

Virtual Entry Station

VESExecute

 Translates strings into commands

 Creates a virtual terminal

 Interprets commands when user is not using API

END

