
Program Structure

softMC Training – Module 4

Contents

 General purpose tasks

 Program code blocks

 Variable declarations

 Event handling

 Error handling

 Program flow control

 Subroutines and functions

 Libraries

Project Structure

Project
(Subproject)

General Purpose Tasks

and Libraries

Configuration Task

Autoexec Task

Data Files

General Purpose Task Structure

 3 main blocks

Subroutine

Main Program

Task Variable Declaration

Test.prg

Task Variable Declarations

 At the top of the program file, before the
Program keyword

 Common Shared declares a variable that is
visible to all tasks

Common Shared Sys_Var1 as Long

 Dim Shared declares a variable whose
visibility is limited to the task in which it is
declared

Dim Shared Task_Var1 as Double

 Dim is used within a program or a subroutine

Test.prg

Main Program

 The main program block is delimited
by Program … End Program keywords

 A task may have only one Program
block

 Alternately: Program Continue …
Terminate Program block.
Program is automatically executed
after loading, and automatically
unloaded from memory when it ends.

 The main program block has
3 sections: Start-up, OnError, OnEvent

Test.prg

Main Program – Start-up Section

 Start-up section immediately follows
the Program keyword

 Start-up is the point at which task
execution begins when StartTask
command is issued

7

Test.prg

Main Program – OnEvent Section

 Optional block of code that
responds to a realtime change, such
as a motor position changing or an
input switch turning on.

 Event handlers reduce the effort
required to make tasks respond
quickly to realtime events.

 Delimited by keywords OnEvent ...
End OnEvent

 OnEvent…End OnEvent keyword
combination is required for each
realtime event.

8

Test.prg

Main Program – OnError Section

 Optional block of code that
responds to errors generated by the
task.

 Error handlers allow program to
automatically respond to error
conditions, and (if possible) recover
smoothly and restart the machine.

 Delimited by keywords OnError ...
End On Error

9

Test.prg

Flow Control

Flow Control

 Instructions used to change the flow of a program based on specific conditions

If … Then … Else … End If

Select Case … End Select

For … Next

While … End While

Do … Loop

Goto

Flow Control – If ... Then ... Else ... End If

 If … Then … Else … End If

 If … Then must be followed by at least one statement

 Else is optional; if used, it must be followed by at least one statement

 Syntax

If <condition> Then

 <code to execute if statement is true>

Else

 <code to execute if statement is false>

End If

Flow Control – If ... Then ... Else ... End If

 Example

If (counter < 10) Then

 Move A1 1000 Absolute = 1 VCruise = 1000

Else

 Move A1 2000 Absolute = 1 VCruise = 2000

End If

Flow Control – Select Case

 Select Case ... End Select enables one of a number of code sections to be
executed, depending on the value of an expression or variable.

 Cases can be specified in one of 4 ways:

 Exact Value

 Logical Condition

 Range

 Else

Flow Control – Select Case

 Syntax

Select Case <SelectExpression>

 {Case <expression>

 {statement_list} }

 {Case Is <relational-operator> <expression>

 {statement_list} }

 {Case <expression> TO <expression>

 {statement_list} }

 {Case <expression> comma <expression>

 {statement_list} }

 {Case Else

 {statement_list} }

End select

Flow Control – Select Case

 Example

Select Case I

 Case 0

 Print "I = 0"

 Case 1

 Print "I = 1"

 Case Is >= 10

 Print "I >= 10"

 Case Is < 0 'No requirement for statements after Case < 0

 Case 5 To 10

 Print "I is between 5 and 10"

 Case 2, 3, 5 'Added in Version 4.7.1

 Print "I is 2, 3 or 5"

 Case Else

 Print "Any other I value"

End Select

Flow Control – For … Next

 For … Next is used to define loops in programs

 Syntax

For <counter> = <start> To <end> {Step <size>}

 {Loop statements}

Next <counter>

 If size is not specified, it defaults to 1

 The loop is complete when the counter value exceeds end

For positive size, complete when counter > end

For negative size, complete when counter < end

 counter, start, end, and size may be long or double

Flow Control – For … Next

 Example

For I = 2 To 5

 Print "I = " I 'Prints 2, 3, 4, 5

Next I

For I = 4 To 2 Step –0.5

 Print "I = " I 'Prints 4.0, 3.5,

3.0, 2.5, 2.0

Next

Flow Control – While … End While

 While … End While allows looping dependent on a dynamic condition
(e.g., loop until input goes high; loop until velocity exceeds a certain value)

 The condition is evaluated before any statements are executed

 If no statements are included, While … End While acts as a delay

 Syntax

While <condition>

 {Loop statements}

End While

 Example

While A2.VelocityFeedback < 1000

 Print "Axis 2 Velocity feedback still under 1000"

End While

Flow Control – Do … Loop

 Do … Loop allows looping dependent on a dynamic condition

 The loop statement block is executed before the condition is evaluated

 Loop statements are executed at least once

 Use While to execute while the condition is true

 Use Until to execute while the condition is false

 Syntax

Do

 {Loop statements}

Loop [While|Until] <condition>

 Example

Do

 Sleep 10

Loop Until Sys.Din.1

Flow Control – GoTo

 Goto unconditionally branches to another section of code.

 It references a label that must appear within the same program block

 You can only branch within a Program, Event, Function or Subroutine

 label is a name followed by a colon (:)

 Syntax

GoTo <label>

 ...

<label>:

 Note: Avoid using GoTo whenever possible – it makes programs hard to
understand and debug

Nesting

 Nesting means one program control command (or block of commands) is
contained within another

 There is no limit on the number of levels of nesting

 Example

For I = 1 to 10

 n = 5

 While n > 0

 n = n – 1

 End While

Next I

Subroutines
and

Functions

Subroutine

 Optional block of code

 A task can have any number of subroutines

 After End Program keywords

 Delimited by keywords Sub ... End Sub

 May contain local variable declarations,
directly after the Sub keyword, using Dim

 Subroutines are components of a task, and
can be called only from the main program
within the task

 Executed when called by Call <sub>

Test.prg

Subroutine

 Syntax

... Sub <name> ({<par_1>([*])+ as <type_1>} ... {, <par_n>([*])+ as <type_n>})

End Sub

<name>

Subroutine name. Maximum 32 characters.

<par_1>, <par_n>

Names of array variables

<par_1>([*]), <par_n>([*])

Names of array variables

[*] dimension of any array without specifying limits

+ means one or more [*]

<type_1>, <type_n)

Type of parameters

Subroutine

 Example

Sub Move_Axis_One (Move_Distance as Long)

 Vcruise = 500

 Acc = 10000

 Dec = 10000

 Move A1 Move_Distance

 While A1.ismoving

 Sleep 10

 End While

End Sub

Function

27

 Function ... End Function delimits the function

 Functions differ from subroutines in one respect:
Functions always return a value to the task that called the function.

 Functions and subroutines use the same syntax and follow the same rules of
application and behavior.

 Because functions return a value, function calls should be treated as
expressions

 Use functions within print commands, assignment statements,
mathematical operations, and as conditions of flow control statements

Function

 Syntax/Examples
Print <function>{(<par_1>{, …<par_n>})}

 <variable> = <function>{(<par_1>{, …<par_n>})}

If <function>{(<par_1>{, …<par_n>})} > 10 Then

 ? Log(<function>{(<par_1>{, …<par_n>})})

<variable>

Name of variable
<function>

Name of the function
<par_1>, <par_n>

Names of the parameters passed to the function

 Results are returned in line : <function >= expression

 Returned value type can be: Long, Double, String, Joint, Location,
User Defined Structure, Generic Axis, Generic Group

Function

 Example

Program

 ?Add1(5)

End Program

Function Add1(ByVal a as long) as long

 Add1=a+1

End Function

Function

 The following example defines a recursive function to calculate the value of N:

 Example

Function Factorial (ByVal N As Long) As Double

'Declaring N to be Long truncates floating point numbers to integers

'The function returns a Double value

 If N < 3 Then

 'Statement stops the recursion

 Factorial = N '0!=0; 1!=1' 2!=2

 Else

 Factorial = N * Factorial(N-1) 'Recursive statement

 End If

End Function

Libraries

Library Components

 Subroutines and functions can be contained in libraries, and thus
can be programmed just once and utilized by a variety of tasks.

 A library is a file that contains only the code of subroutines and functions.

 A library file does not have a main program block.

 A library file has the extension .lib.

Types of Libraries

 Local Library

 Accessible only to the program that issues the library import instruction

 Must be the first line of program

Import <library>.lib

 Can be loaded at any time

 Global Library

 Accessible to all programs in the system, and within terminal context

 Must be loaded during system start

Load < library >.lib

when issued from config.prg

LoadGlobal < library >.lib

when issued from the terminal

 Both types of libraries can be checked using TaskList command

Libraries

 Libraries are loaded into RAM, to be used during task execution

 Keyword Public makes subroutine visible outside the library file

 Syntax
<Declaration of static variables>

{Public} Sub <subroutine>

<Declaration of variables local to the subroutine>

 <subroutine code>

End Sub

 Examples
Import MyLibrary.lib 'Import library into task context

Load MyLibrary.lib 'Load the library

into RAM

LoadGlobal MyLibary.lib 'Import library into system context

END

