
Servotronix
Motion API

softMC Training – Module 10

Contents

 Initialization

 Device Table

 Accessing Devices

 Command Execution

 Variable Access

 Error Messages

 Error Codes

 Termination (Cleanup)

 Sending/Retrieving Files

 Advanced Asynchronous Message Handling

 Programming with Visual Basic

OVERVIEW

Application Programming Interface (API)

 The Servotronix Motion API provides the means for interfacing
your machine controller with the softMC motion controller :

 Sending commands and receiving responses

 Reading and setting drive or controller variables

 Sending and retrieving files

 Error handling

 The API provides a library of functions that allow you to describe your system
in terms of devices (axes, groups, controllers) and then communicate with
these devices individually.

 The API is provided as a Windows DLL, named KMAPI.dll,
making it accessible from most Windows programming languages.

 The API is installed as part of the ControlStudio installation.

 The API is connected to an Entry Station instance in the softMC.
The system has a limit of 3 entry station instances;
that is, no more than 3 connections from 3 different computers.

4

INITIALIZATION

Initialization

 To start using the API, call the initialization function KMInitialize.

 Initalization ensures that the data maintained internally by the API about your
application is correct.

DEVICE TABLE

Device Table

 A device table is a database managed by the API.

 Table is populated with devices by the programmer

 Allows programmer to execute commands on any device in the device table

 KMWriteDeviceFile and KMReadDeviceFile functions are used to save and
load device table

Adding Devices to Device Table

 After initialization, the next task is to describe and add to the API device table
the devices you want to control.

 Typical system: a softMC motion controller with several connected CDHD
servo drives.

 KMCreate ... functions allow you to add devices to the API device table.

 KMCreate functions return a handle to a newly created device.

 A handle allows the API to know which device you are referring to.

 KMGet ... functions retrieve a handle or information about a particular device.

 KMDestroyDevice function removes devices from the device table.

 KMCreateSercosAxis returns a handle to an axis.

Device Table Iteration

 KMCreateDeviceIterator function enables iteration through the device table

 An iterator can display all the controllers, axes, or groups, or any combination
of the three.

 KMGetNextDevice and KMGetPrevDevice functions are used to move to the
next or previous device on the iterator list.

ACCESSING DEVICES

Accessing Devices

 The API has two mechanisms for communicating with devices:

 Command execution

 Variable access

Command Execution

 Command execution is handled through two functions:

 KMExecuteCmd

 KMExecuteCmdResponse

 Each of these functions takes a handle to the device on which the command
should be executed and a string buffer containing the command to be
executed.

 KMExecuteCmdResponse uses a buffer to store the response from the softMC;
when responding to the command, it also indicates the length of data that has
been put into the buffer.

Variable Access

 2 types of variable access functions

 Functions to get and set variables for each type (long, double, string)

 Functions to access the two components of an axis (drive and controller)

 Access string type variables on the softMC via the function
KMVariableControllerGetStringValue

ERROR (Status) MESSAGES

Error Messages

 Most API functions return a(n error) code that indicates the status of the action
requested by the programmer.

 Successful API functions return KM_ERR_OK.

 Textual descriptions are often associated with the error and can be accessed
via API calls.

Error Messages

 Errors originate in the device itself or the API.

 When the message originates within the API, an error number is returned and
can be compared against the list of errors in the API header files (C/C++) or the
global files (Visual Basic).

 The API also assigns a text message to the error that can be retrieved by calling
KMErrorGetMessage.

 When the error originates in the device (drive or controller), the API parses the
message and stores the relevant information, including the error message and
the error number, as given by the device.

 This information can be retrieved for the last error via
KMErrorGetDeviceMessage.

 The text of the error message sent by the device can be retrieved via
KMErrorGetOriginalDeviceMessage.

TERMINATION

Termination (Cleanup)

 The last call to the API before your application exits should be a call to
KMTerminate.

 This function ensures the API handles the cleanup of the internal information it
maintains about your application.

SENDING/RETRIEVING FILES

Sending/Retrieving Files

 For sending and retrieving files, use functions KMPutFile and KMGetFile.

 When calling either of these functions, the path of the file and the actual
command must be sent, in addition to the device handle parameter.

ADVANCED ASYNCHRONOUS
MESSAGE HANDLING

Asynchronous Messages

 Controller-generated messages not related to a specific command are called
asynchronous messages.

 Examples of asynchronous messages:

 Over-speed warnings

 Servo drive faults such as limit switch closures

 Runtime error messages from softMC tasks

 When these messages are received, the API converts them into Windows
messages (events) that can be programmed for delivery to the application.

Asynchronous Messages

 By default, the API displays each asynchronous message in a modal dialog box
(via the Win32 MessageBox function).

 To handle these messages differently, use the function KMAsyncSetHandler to
register a window as the destination for these messages.

 KMAsyncGetHandler can be used to save the previous error handler to allow
you to restore it on demand.

Asynchronous Messages

 Like all Windows messages, WM_KM_ASYNC has two parameters:

 wParam

 lParam

 lParam contains a handle to the buffer that contains the asynchronous
message received by the API.

 Use KMAsyncGetMessage to get the asynchronous message from the API.

 Asynchronous messages are “posted” (PostMessage) by the API (as opposed to
being “sent”).

 Asynchronous messages are sent to all applications that have called
KMInitialize.

VISUAL BASIC PROGRAMMING

Visual Basic Programming

 The API is a set of DLLs.

 When DLLs return strings to Visual Basic they may appear to be corrupted,
especially if there was data in the string before it was passed to the DLL
function.

 Caused by differences in the method of storing strings used VB and the
method the DLLs use (“zero-terminated strings”).

 Zero-terminated strings are commonly used in C/C++ programming.
The end of the string is designated by CHR$(0).

 To clean up a string that has been returned by a DLL, scan the string for
CHR$(0), and then trim the characters to the right.

 Alternately, make sure the string is clear before passing it to a DLL,
by assigning it to vbNullString prior to calling the DLL function.

END

