softMC Training — Module 4

Program Structure

General purpose tasks
Program code blocks
Variable declarations
Event handling

Error handling

Program flow control
Subroutines and functions

Libraries

&Y sErVOTRONIX

Project Structure

(\

General Purpose Tasks

and Libraries

Configuration Task

()

Project .
(Subproject) g A
) g Autoexec Task

Data Files

&N servoTRONIX

General Purpose Task Structure

® 3 main blocks

Test.prg

Task Variable Declaration

Dim Shared I as Long
Dim Shared X[10] as Double

-

Main Program

_

Program

OnEvent PRINTER I = 5
Print "Event: I = 5"
End OnEvent

OnError
Catch 8001 'Div by zero
Print "Divided by zero"
ContinueTask Test.prg

End OnError

EventOn PRINTER
For I =1 to 10
Call Simple

Next I

T ="1/0 'Show OnError
Print "Task continued after error"
End Program

'Tuarn event on

7

Subroutine

\

Sub Simple
Print I
End Sub

J

&N servoTRONIX

Task Variable Declarations

® At the top of the program file, before the
Program keyword

® Common Shared declares a variable that is
visible to all tasks

Common Shared Sys Varl as Long

® Dim Shared declares a variable whose
visibility is limited to the task in which it is
declared

Dim Shared Task_Varl as Double

® Dim is used within a program or a subroutine

&N servoTRONIX

Test.prg ’

[

Dim Shared I as Long
Dim Shared X[10] as Double

Program

OnEvent PRINTER I
Print "Event: I =
End OnEvent

=5
Bn

OnError
Catch 8001 'Div by zero
Print "Divided by zero"
ContinueTask Test.prg

End OnError

EventOn PRINTER 'Tuarn event on
For I =1 to 10

Call Simple
Next I
T =140 'Show OnError
Print "Task continued after error"
End Program

Sub Simple
Print I
End Sub

Main Program

® The main program block is delimited
by Program ... End Program keywords

® A task may have only one Program

block Test.prg ’
® Alternately: Program Continue ... Dim Shared I as Long
. Dim Shared X[10] as Double
Terminate Program block.
3 3 Program
Program is automatically executed (OnEvent R)
after loading, and automatically Print "Event: I = 5"

) End OnEvent
unloaded from memory when it ends.

. OnError
® The main program block has Catch 8001 'Div by zero
. Print "Divided by zero"
3 sections: Start-up, OnError, OnEvent ContinueTask Test.prg

End OnError

EventOn PRINTER 'Tarn event on
For I =1 to 10
Call Simple

Next I

T =10 'Show OnError

Print "Task continued after error"
\\‘End Program <,/

Sub Simple

Print I
& servOTRONIX End Sub

Main Program — Start-up Section

® Start-up section immediately follows
the Program keyword

® Start-up is the point at which task
execution begins when StartTask
command is issued

&N servoTRONIX

Test.prg

Dim Shared I as Long
Dim Shared X[10] as Double

Program

OnEvent PRINTER I =
Print "Event: I = 5"
End OnEvent

5

OnError
Catch 8001 'Div by zero
Print "Divided by zero"
ContinueTask Test.prg

End OnError

EventOn PRINTER 'Tuarn event on
For I =1 to 10

Call Simple
Next I
T =140 'Show OnError
Print "Task continued after error"
End Program

Sub Simple
Print I
End Sub

Main Program — OnEvent Section

® Optional block of code that
responds to a realtime change, such
as a motor position changing or an
input switch turning on. Test.prg ’

® Event handlers reduce the effort b RIS, TS
required to make tasks respond B RharatKLEG Sas s
quickly to realtime events.

Program

OnEvent PRINTER I = 5
Print "Event: I = 5"
End OnEvent

® Delimited by keywords OnEvent ...

End OnEvent

OnError
® OnEvent...End OnEvent keyword Catch 8001 'Div by zero
i . . i Print "Divided by zero"
combination is required for each ContinueTask Test.prg

. End OnError
realtime event.
EventOn PRINTER 'Tuarn event on
For I =1 to 10

Call Simple
Next I
T =140 'Show OnError
Print "Task continued after error"
End Program

Sub Simple
Print T

&Y servOTRONIX End Sub :

Main Program — OnError Section

® Optional block of code that
responds to errors generated by the

task.
® Error handlers allow program to Test.prg
automatically respond to error P A R, AT
conditions, and (if possible) recover Bin shared X100 ‘as Doubile
smoothly and restart the machine. Program
OnEvent PRINTER I = 5
® Delimited by keywords OnError ... Print "Event: I = 5"
End OnEvent
End On Error
OnError
Catch 8001 'Div by zero

Print "Divided by zero"
ContinueTask Test.prg
End OnError

EventOn PRINTER 'Tuarn event on
For I =1 to 10

Call Simple
Next I
T =140 'Show OnError
Print "Task continued after error"
End Program

Sub Simple
Print T

&Y servOTRONIX End Sub .

Flow Control

Flow Control

® Instructions used to change the flow of a program based on specific conditions
If .. Then .. Else .. End If
Select Case .. End Select
For .. Next
While .. End While
Do .. Loop
Goto

&Y sErVOTRONIX

Flow Control - If ... Then ... Else ... End If

e If... Then ... Else ... End If
= |f... Then must be followed by at least one statement
= Else is optional; if used, it must be followed by at least one statement

® Syntax
If <condition> Then
<code to execute if statement is true>
Else
<code to execute if statement is false>
End If

&Y sErVOTRONIX

Flow Control - If ... Then ... Else ... End If

® Example
If (counter < 10) Then
Move Al 1000 Absolute
Else
Move Al 2000 Absolute
End If

1l VCruise = 1000

1 VCruise = 2000

&Y sErVOTRONIX

Flow Control — Select Case

® Select Case ... End Select enables one of a number of code sections to be
executed, depending on the value of an expression or variable.

® Cases can be specified in one of 4 ways:
= Exact Value
= Logical Condition
= Range
= Else

&Y sErVOTRONIX

Flow Control — Select Case

® Syntax
Select Case <SelectExpression>
{Case <expression>
{statement list} }
{Case Is <relational-operator> <expression>
{statement list} }
{Case <expression> TO <expression>
{statement list} }
{Case <expression> comma <expression>
{statement list} }
{Case Else
{statement list} }
End select

&Y sErVOTRONIX

Flow Control — Select Case

® Example

Select Case I
Case 0
Print "I = 0"
Case 1
Print "I = 1"
Case Is >= 10
Print "I >= 10"
Case Is < O 'No requirement for statements after Case < 0
Case 5 To 10
Print "I is between 5 and 10"
Case 2, 3, 5 'Added in Version 4.7.1
Print "I is 2, 3 or 5"
Case Else
Print "Any other I wvalue"
End Select

&Y sErVOTRONIX

Flow Control — For ... Next

® For ... Next is used to define loops in programs

® Syntax
For <counter> = <start> To <end> {Step <size>}
{Loop statements}

Next <counter>

= |f size is not specified, it defaultsto 1

= The loop is complete when the counter value exceeds end
For positive size, complete when counter > end
For negative size, complete when counter < end

= counter, start, end, and size may be long or double

&Y sErVOTRONIX

Flow Control — For ... Next

® Example
For I = 2 To 5
Print "I =" I '"Prints 2, 3, 4, 5
Next I

For I = 4 To 2 Step -0.5

Print "I =" I 'Prints 4.0, 3.5,
3.0, 2.5, 2.0
Next

&Y sErVOTRONIX

Flow Control — While ... End While

e While ... End While allows looping dependent on a dynamic condition
(e.g., loop until input goes high; loop until velocity exceeds a certain value)

= The condition is evaluated before any statements are executed
= |f no statements are included, While ... End While acts as a delay

® Syntax
While <condition>
{Loop statements}
End While

® Example
While A2.VelocityFeedback < 1000
Print "Axis 2 Velocity feedback still under 1000"
End While

&Y sErVOTRONIX

Flow Control — Do ... Loop

® Do ... Loop allows looping dependent on a dynamic condition
= The loop statement block is executed before the condition is evaluated
= Loop statements are executed at least once

® Use While to execute while the condition is true

® Use Until to execute while the condition is false

® Syntax
Do
{Loop statements}

Loop [While|Until] <condition>

® Example
Do
Sleep 10
Loop Until Sys.Din.1

&Y sErVOTRONIX

Flow Control — GoTo

® Goto unconditionally branches to another section of code.
= |t references a label that must appear within the same program block
= You can only branch within a Program, Event, Function or Subroutine
= [abel is a name followed by a colon (:)

® Syntax
GoTo <label>

<label>:

® Note: Avoid using GoTo whenever possible — it makes programs hard to
understand and debug

&Y sErVOTRONIX

® Nesting means one program control command (or block of commands) is
contained within another

= There is no limit on the number of levels of nesting

® Example
For T =1 to 10
n=3>5
While n > 0
n=n-1
End While
Next I

&Y sErVOTRONIX

Subroutines
and
Functions

Optional block of code

A task can have any number of subroutines

After End Program keywords
Delimited by keywords Sub ... End Sub

May contain local variable declarations,
directly after the Sub keyword, using Dim

Subroutines are components of a task, and
can be called only from the main program
within the task

Executed when called by Call <sub>

&N servoTRONIX

Test.prg

Dim Shared I as Long
Dim Shared X[10] as Double

Program

OnEvent PRINTER I
Print "Event: I =
End OnEvent

=5
Bn

OnError
Catch 8001 'Div by zero
Print "Divided by zero"
ContinueTask Test.prg

End OnError

EventOn PRINTER 'Tuarn event on
For I =1 to 10

Call Simple
Next I
T =140 'Show OnError
Print "Task|continued after error"
End Program

Sub Simple
Print T
End Sub

® Syntax

. Sub <name> ({<par 1>([*])+ as <type 1>} ... {, <par n>([*])+ as <type n>})

End Sub

<name>
Subroutine name. Maximum 32 characters.
<par 1>, <par n>
Names of array variables
<par 1>([*]), <par n>([*])
Names of array variables
[*] dimension of any array without specifying limits
+ means one or more [*]
<type 1>, <type n)
Type of parameters

&Y sErVOTRONIX

® Example

Sub Move Axis One (Move Distance as Long)
Vcruise = 500
Acc = 10000
Dec = 10000
Move Al Move Distance
While Al.ismoving
Sleep 10
End While
End Sub

&Y sErVOTRONIX

Function ... End Function delimits the function

Functions differ from subroutines in one respect:
Functions always return a value to the task that called the function.

Functions and subroutines use the same syntax and follow the same rules of
application and behavior.

Because functions return a value, function calls should be treated as
expressions

= Use functions within print commands, assignment statements,
mathematical operations, and as conditions of flow control statements

&Y sErVOTRONIX 27

® Syntax/Examples
Print <function>{ (<par 1>{, .<par n>})}
<variable> = <function>{ (<par 1>{, .<par n>})}

If <function>{ (<par 1>{, .<par n>})} > 10 Then
? Log(<function>{ (<par 1>{, .<par n>})})

<variable>
Name of variable
<function>
Name of the function
<par_ 1>, <par n>
Names of the parameters passed to the function

= Results are returned in line : <function >= expression

= Returned value type can be: Long, Double, String, Joint, Location,
User Defined Structure, Generic Axis, Generic Group

&Y sErVOTRONIX

® Example

Program
?Add1 (5)

End Program

Function Addl (ByVal a as long) as long
Addl=a+1

End Function

&Y sErVOTRONIX

® The following example defines a recursive function to calculate the value of N:

® Example

Function Factorial (ByVal N As Long) As Double
'Declaring N to be Long truncates floating point numbers to integers
'The function returns a Double value

If N < 3 Then
'Statement stops the recursion

Factorial = N '0!'=0; 1'=1"' 2!=2
Else

Factorial = N * Factorial (N-1) 'Recursive statement
End If

End Function

&Y sErVOTRONIX

Libraries

Library Components

® Subroutines and functions can be contained in libraries, and thus
can be programmed just once and utilized by a variety of tasks.

® Alibrary is a file that contains only the code of subroutines and functions.
® Alibrary file does not have a main program block.
® Alibrary file has the extension .lib.

Library
Functions Subroutines
with return without return value,
value execution only

&N servoTRONIX

Types of Libraries

® Local Library
= Accessible only to the program that issues the library import instruction

= Must be the first line of program
Import <library>.lib

= Can be loaded at any time

e Global Library
= Accessible to all programs in the system, and within terminal context

= Must be loaded during system start
Load < library >.1lib

when issued from config.prg
LoadGlobal < library >.lib

when issued from the terminal

® Both types of libraries can be checked using TaskList command

&Y sErVOTRONIX

Libraries

® Libraries are loaded into RAM, to be used during task execution
e Keyword Public makes subroutine visible outside the library file

® Syntax
<Declaration of static variables>
{Public} Sub <subroutine>
<Declaration of variables local to the subroutine>

<subroutine code>

End Sub
® Examples
Import MyLibrary.lib 'Import library into task context
Load MyLibrary.1lib 'Load the library
into RAM

LoadGlobal MyLibary.lib 'Import library into system context

&Y sErVOTRONIX

END

