
Running, Controlling 
and Debugging a Task 

softMC Training – Module 5 



Contents 

 Load, Run, Idle, Pause, Abort 

 Multiple instances of a task 

 Multitasking – multiple tasks running simultaneously 

 Priority 

 Task status 

 Debugging 

 

 

 

 



Loading and Starting a Task 
 

 



Loading a Task 

 Load command loads a task/library from the flash memory into softMC RAM 

 from Terminal 

 from another task 

 from autoexec.prg 

 

 Syntax/Example 
Load MyTask.prg 

 

 Program/library must be loaded to RAM in order to be executed 

 

 Syntax is checked when the task is loaded 

 Syntax errors are written to the TRN.ERR file 

 Program with syntax error will not be executed 
 

 ControlStudio 

 Use the Save and Load button 

 

 



Running a Task 

5 

 StartTask command starts execution of a task  

 from Terminal 

 from another task 

 from autoexec.prg 

 

 Syntax 
StartTask <task> {Priority = <level>} {NumberOfLoops = <number>} 

 

 Example 
StartTask MyTask.prg Priority = 6 

StartTask MyTask.prg NumberOfLoops = 5 

 

 ControlStudio 

 Use the Continue Task (Run) button 
 

 

 

 

 



Idling a Running Task 

6 

 IdleTask command stops the task at the end of the line currently being 
executed and idle all its events 

 

 Syntax/Example 
IdleTask MyTask.prg 

 

 IdleTask does not stop motion currently being executed 

 

 An idled task can be continued (ContinueTask) or terminated (KillTask) 
 

 ControlStudio 

 Use the Idle Task button 
 

 

 
 

 

 



Pause Task 

 PauseTask command idles the active program at the next Pause command 
within the program 

PauseTask <task> 

 

 Pause Task command works only if there is Pause command 

 

 Useful as a debugging tool 

 

 ControlStudio 

 Use the Pause Task button 

 

 

 



Continuing a Task 

 ContinueTask resumes execution of an idled task 

 

 Syntax/Example 
ContinueTask MyTask.prg 

 

 ControlStudio 

 Use the Continue Task (Run) button 
 

 

 



Aborting a Running Task 

9 

 KillTask command aborts execution of a running task  

 

 Syntax/Example 
KillTask MyTask.prg 

 

 All attached motion elements are stopped and detached 

 

 All events are cancelled  

 

 Files that were opened by an aborted task will not be 
closed by the KillTask command. 

 



Running a Task Repeatedly (Loops) 

 A program can be repeated a specific amount of times 

 

 Syntax 
StartTask <task> {NumberOfLoops = <number>} 

 

 -1 = Unlimited number of loops 

 1 to 32768 =  number of times the task is executed 

 If number is not entered, it defaults to 1 

 

 Example 
StartTask MyTask.prg NumberOfLoops = 3 

 



Multitasking 
 



Multitasking 

 softMC can run up to 256 programs at one time 

 Use multiple tasks when application has multiple processes that are essentially 
independent of each other 

 Separate concurrent tasks should be used: 

 To simplify a system 

 To perform an operation that is completely independent from the main task 

 To run an independent processes on the machine 

 To run an operation at a higher priority level than the main task 

 To handle errors 

 To perform communication task  

 Example: teach pendant sends/receives commands while another 
executes 



Multitasking 

 Multiple tasks can run independently 

 If a machine is simple to control, keep the entire program in one task 

 Do not split control of an axis or group across tasks  

 

 Use multitasking when different parts/processes of a machine operate mostly 
independently of each other. Some control between tasks may be required, 
such as one task starting or stopping another 

 

 Use the main task for machine initialization and controlling the other tasks, and 
use other tasks for programming normal machine operation 

 For example, use Main.prg to initialize the machine and to start Pump.prg, 
Conveyor.prg, and Operator.prg. 

 

 Use different tasks to control different operational modes: one for power up, 
one for setup, one for normal operation, and another for when problems occur 

 



Communication 
Task 

Process 
Task 1 

Task Interactions 

Common  
Shared Variable 

Process 
Task 2 

Error  
Handling 

Task activation 



Semaphores 

 Used for synchronization and mutual exclusion  

 Semaphores are global, defined with Common Shared  

 A semaphore is given/released by SemaphoreGive  

 A semaphore is taken/consumed by SemaphoreTake  

 

 



Priority 



Multitasking and Task Priority 

 The operating system (Linux RT) provides system resources based on two 
criteria:  

 Task priority level 

 Time slice 

 Highest priority task always runs first 

 Time slice (round-robin scheduling)  

 Operating system divides resources equally when multiple tasks have same 
priority level 

 The time slice is one millisecond in duration 

 A low priority task cannot interrupt a high priority task 

 

 

 

17 



Assigning Task Priority Level 

 The priority level of the task is assigned when it is loaded using StartTask 
StartTask <task> {Priority = <priority>} 

 

 Example: 
StartTask MyTask.prg Priority = 4 

 

 

 Level 1 – Highest priority level - Use with caution!  

 Level 2 is default for Terminal – softMC command line 

 Level 3 is default for Events 

 Level 16 – Lowest priority level - Default for Tasks 
 



Multitasking – Relinquishing Computing Resources 

 Tasks relinquish CPU resources when... 

 the task is terminated 

 the task is suspended 

 the task is idled 

 

 Terminating tasks  

 When the task is completed 

 When any task uses the KillTask command 

 

 Idled tasks 

 When any task uses the IdleTask 

 

 Suspended tasks  

 Note: a task that is suspended is still running 

 When the task waits for a resource (e.g., motion element, semaphore)  

 Sleep command suspends task 

 

 



Task Status 

 



Task States 

 Ready  

 Task is loaded and waiting for StartTask command 

 Running 

 Task has been started by a StartTask command 

 Suspended  

 Task is waiting for a resource.  

 Task is waiting for a motion to be completed 

 Idled   

 A loaded task has executed the current command and does not continue 
until a ContinueTask command is issued 

 Terminated   

 Task has finished running 

 Task  has been aborted by KillTask command 

 

21 



Query Task Status 

 Query the state and priority of all tasks loaded in the system 

 From the terminal 
?TaskList 

 

 

 Query the current status of a task that is loaded in memory 

 From the terminal 
Task.Status  

 State <state>: <description> Error <last error number> 

   Source <line of source code> 

 
Task.State 

Returns the numeric value of the task state 

 



Task States Numeric Values 

 Returned <state> values: 

 1 = Running 

 2 = Stopped, due to IdleTask 

 4 = Stopped, due to run-time error 

 5 = Terminated 

 7 = Ready, after Load 

 10 = Killed, after KillTask or End Program 

 

 

 

23 



Debugging 

 



Debugging 

 Task must be in one of the following states: 

 Ready (7) 

 Stopped (2) 

 Error (4) 

 Killed (10) 

 



Breakpoints 

 Inserts a breakpoint in the task or library 
functions/subroutines at the specified 
program line number  

 When a breakpoint is reached, the task 
switches to the idle state 

 Program execution is resumed by issuing the 
ContinueTask command, or by using the 
program debugging commands: StepIn, 
StepOver, and StepOut 

 



Step Commands 

 Step Over 

 Step Into 

 Step out 

 Break point 

 

 A step command executes one line of code 

 

 Depending on command, it will skip over 
the subroutine, step into the subroutine, or 
exit the subroutine 

 



Finding Source of Error in a Stopped Program 

 BACKTRACE retrieves the function calls (source lines) that produced the error 



Error History 

 ?errorhistory  returns the error log file, which contains the last 512 errors that 
have occurred in the system.  Errors are saved in the Flash disk. 



END 

 


