
Events & Error Handling

softMC Training – Module 9

Topics

 Events

 Errors

Events

Event Handling

 Events can also be thought of as interrupts

 Events are subroutines that are started by a real-time condition

 Events run in their own context (like a separate task) but have access to task
local variables

 Use priority carefully to control execution (default priority is 3)

 Events consist of an event condition and an event action

OnEvent Command Syntax

 Syntax
OnEvent <event> {<condition>} {Priority=<priority>} {ScanTime=<time>}

 <code block that defines the event action>

End OnEvent

event

Any valid name that is otherwise not used in the task
condition

Any logical expression, such as System.Dout.1 = 1.
The event is triggered when condition switches from false to true

Priority

An integer from 1 (highest) to 16 (lowest). Default is 1. The priority
should always be higher than the priority of the task or the event will
never run.

ScanTime

An integer indicating the number of motion bus cycles between each
scan. Default is 1 (every cycle).

OnEvent Command Example

 Example

 An event action is triggered whenever input 1 goes high.

 The event causes axis X-axis to move 10000 counts.

OnEvent MOVE_ON_TRIGGER System.Din.1=ON

 Move X-axis 10000

End OnEvent

OnEvent Program Example

Test.prg

EventOn – EventOff

 EventOn enables event scanning

 OnEvent (name and condition) must be defined before EventOn is issued

 Syntax
EventOn <event>

 EventOff disables event scanning

 Syntax
EventOff <event>

 View list of defined events (from Terminal)
?EventList

Program Flow and OnEvent

 GoTo commands can be used within an OnEvent block of code

 GoTo commands cannot be used to branch out of or into the event handler
(because OnEvent interrupts the main program)

 OnEvent…End OnEvent cannot be used within program flow commands

 Local variables cannot be declared or used within an OnEvent block of code

Error Handling

Error Handling

 An error handler instructs the softMC how to respond to an error in the system

 softMC has a default error handler

 To change how the softMC responds to certain errors or even all errors,
you must write an error handler

Severities of Errors

 Errors

 Errors that can be trapped and handled by the user

 If not handled by the user, the system has a default error handler

 Fatal Faults

 Errors that cannot be trapped by the user

 Severe internal firmware errors

 Notes

 Messages informing user that something did not occur as expected

 Does not halt execution

Types of Errors

 Multi-level error handling

 Program line context (Try … End Try)

 Task-wide context (OnError … End OnError)

 System-wide context (OnSystemError … End OnSystemError)

 Synchronous errors

 Associated with a specific program line

 Example: division by zero or out of range parameters on a command

 Asynchronous errors

 Not associated with a specific program line

 Example: a following error and overspeed error

Error Handling – In a Program Line

 Try … End Try is used to handle an error on a specific line of code

 Syntax
Try

 <code being monitored>

 {Catch <error number X>

 <code to execute when error X occurs>}

 {Catch <error number Y>

 <code to execute when error Y occurs>}

 {Catch else

 <code to execute for all other errors>}

 {Finally

 <code to execute if error occurred and was trapped>}

End Try

Error Handling – In a Program Line

 Example
Try

 MyVariable = 1/A1.PFB

 Catch 27 'Divide by zero

 Print "Divided By Zero"

 Finally

 Print "An error occurred and it was handled"

End Try

Error Handling – In a Task

 OnError … End OnError is used to handle an error that occurs in a specific task

 Syntax
OnError

 {Catch <error number X>

 <code to execute when error X occurs>}

 {Catch <error number Y>

 <code to execute when error Y occurs>}

 {Catch else

 <code to execute for all other errors>}

End OnError

Error Handling – In a Task

 Examples

OnError

 Catch 27

 Print "Divided By Zero"

End OnError

OnError 'Start of OnError block

 Catch 27 'Division by zero

 Print "Divided by zero"

 ContinueTask MyTask.Prg

End OnError 'End of OnError

block

Error Handling – In Any Task (System)

 OnSystemError … End OnSystemError is used to handle an error that occurs
within the system that is not caught by OnError/Try.

 For example:

 position error on an axis not attached to a task

 Velocity over-speed

 Syntax
OnSystemError

 {Catch <error number X>

 <code to execute when error X occurs>}

 {Catch <error number Y>

 <code to execute when error Y occurs>}

 {Catch else

 <code to execute for all other errors>}

End OnSystemError

Error Handling – In Any Task (System)

 Examples

OnSystemError 'Start of

OnSystemError block

 Catch 27 'Divide by zero

 Print "Divided By Zero"

End OnSystemError 'End of OnSystemError block

OnSystemError

 Catch 3017 'Position Error Overflow

 Print "Position error exceeded"

ContinueTask MyTask.Prg

End OnSystemError

END

